37 research outputs found

    Viscous free surface cusps - local solution

    Get PDF

    The Explicit-Implicit-Null method:Removing the numerical instability of PDEs

    Get PDF
    International audienceno abstrac

    Singularities of relativistic membranes

    Get PDF

    Fluid interfaces with very sharp tips in viscous flow

    Get PDF
    When a fluid interface is subjected to a strong viscous flow, it tends to develop near-conical ends with pointed tips so sharp that their radius of curvature is undetectable. In microfluidic applications, tips can be made to eject fine jets, from which micrometer-sized drops can be produced. Here we show theoretically that the opening angle of the conical interface varies on a logarithmic scale as a function of the distance from the tip, owing to nonlocal coupling between the tip and the external flow. Using this insight we are able to show that the tip curvature grows like the exponential of the square of the strength of the external flow and to calculate the universal shape of the interface near the tip. Our experiments confirm the scaling of the tip curvature as well as of the interface’s universal shape. Our analytical technique, based on an integral over the surface, may also have far wider applications, for example treating problems with electric fields, such as electrosprays

    Theory of Drop Formation

    Get PDF
    We consider the motion of an axisymmetric column of Navier-Stokes fluid with a free surface. Due to surface tension, the thickness of the fluid neck goes to zero in finite time. After the singularity, the fluid consists of two halves, which constitute a unique continuation of the Navier-Stokes equation through the singular point. We calculate the asymptotic solutions of the Navier-Stokes equation, both before and after the singularity. The solutions have scaling form, characterized by universal exponents as well as universal scaling functions, which we compute without adjustable parameters

    How many ways a cell can move:the modes of self-propulsion of an active drop

    Get PDF
    Numerous physical models have been proposed to explain how cell motility emerges from internal activity, mostly focused on how crawling motion arises from internal processes. Here we offer a classification of self-propulsion mechanisms based on general physical principles, showing that crawling is not the only way for cells to move on a substrate. We consider a thin drop of active matter on a planar substrate and fully characterize its autonomous motion for all three possible sources of driving: (i) the stresses induced in the bulk by active components, which allow in particular tractionless motion, (ii) the self-propulsion of active components at the substrate, which gives rise to crawling motion, and (iii) a net capillary force, possibly self-generated, and coupled to internal activity. We determine travelling-wave solutions to the lubrication equations as a function of a dimensionless activity parameter for each mode of motion. Numerical simulations are used to characterize the drop motion over a wide range of activity magnitudes, and explicit analytical solutions in excellent agreement with the simulations are derived in the weak-activity regime.Comment: to appear in Soft Matter (2020
    corecore